Posts

Showing posts from June, 2018

scikit Naive Bayes Jupyter Notebook

Naive Bayes In [8]: import numpy as np import pandas as pd import urllib import sklearn from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn.cross_validation import train_test_split In [9]: from sklearn import metrics from sklearn.metrics import accuracy_score Naive Bayes Use Naive Bayes to predict spam In [12]: url = "https://archive.ics.uci.edu/ml/machine-learning-databases/spambase/spambase.data" raw_data = urllib . request . urlopen ( url ) dataset = np . loadtxt ( raw_data , delimiter = "," ) print ( dataset . shape ) dataset [ 0 ] (4601, 58) Out[12]: array([ 0. , 0.64 , 0.64 , 0. , 0.32 , 0. , 0. , 0. , 0. , 0. , 0. , 0.64 , 0. , 0. , 0. ...